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Abstract In this study, a simple three-parameter linear

model is presented for estimation of flash point (FP) of

pure compounds. The parameters of the model contain

experimental normal boiling point of the compound and

two chemical structure-based parameters. A comprehen-

sive database of FPs containing 1472 pure compounds of

various chemical structures was used to develop the model.

The squared correlation coefficient and average absolute

error of the model calculation results for all of the com-

pounds presented in the database are evaluated to be 0.982

and 7.2 K, respectively.

Keywords Flash point � Normal boiling point � Safety �
Fire � Flammability

Introduction

Flammability characteristics of substance are required in

most scientific and engineering branches [1–18]. Flash

point (FP) is the best known and most widely used flam-

mability property for evaluation of flammability hazard of

combustible liquids. This property is defined as the lowest

temperature at which it can form an ignitable mixture with

air. At this temperature, the vapor may cease to burn when

the source of ignition is removed.

A number of methods have been presented to estimate

the FP of pure compounds. These methods can be classified

into three main categories based on the type of parameters

applied.

The first group includes those correlations using at least

one another physical property such as boiling point, den-

sity, vapor pressure, critical properties, and enthalpy of

vaporization. This class of methods usually focuses on the

application of some molecular-based parameters for esti-

mation of the FP property. According to this group, we can

refer to the correlations presented by Prugh [19], Fuji

and Herman [20], Patil [21], Suzuki [22], Satyarayana and

Kakati [23], Satyarayana and Rao [24], Metcalfe and

Metcalfe [25], Hshieh [26], Catoire and Naudet [27],

and Carroll et al. [28].

The second group of the methods contains correlations

called quantitative structure–property relationships (QSPR)

[29–74]. These correlations employ only molecular-based

parameters to predict the FP property of pure compounds.

For this group, we can refer to the models presented by

Tetteh et al. [75], Katritzky et al. [76, 77], and Gharagheizi

and Alamdari [44].

The last set is actually an especial group of the latter

group called group contribution methods, which use the

number of occurrences of different functional groups in

chemical structure to estimate the FP of pure compounds.

In this type, we can refer to the works of Albahri [78], Pan

et al. [79], Gharagheizi et al. [46], and Keshavarz and

Ghanbarzadeh [80].

Electronic supplementary material The online version of this
article (doi:10.1007/s10973-011-1951-5) contains supplementary
material, which is available to authorized users.

F. Gharagheizi (&)

Saman Energy Giti Co, Tehran 3331619636,

Islamic Republic of Iran

e-mail: fghara@gmail.com; fghara@ut.ac.ir

M. H. Keshavarz

Department of Chemistry, Malek-ashtar University

of Technology, Shahin-shahr, P.O. Box 83145/115,

Islamic Republic of Iran

M. Sattari

Mapna Generator Engineering & Manufacturing Co (Pars),

Tehran, Islamic Republic of Iran

123

J Therm Anal Calorim (2012) 110:1005–1012

DOI 10.1007/s10973-011-1951-5

http://dx.doi.org/10.1007/s10973-011-1951-5


Comparison between these three groups of methods is

pretty difficult, because there are significant points that

should be considered in the comparative study; e.g., sim-

plicity of the model, accuracy of model, simplicity of

parameters used in the model, and comprehensiveness of

model for covering wider range of investigated chemical

compounds.

Based on the simplicity of the model, the first category

seems to be more convincing than the others. Based on the

accuracy, simplicity of parameters used in the model, and

comprehensiveness of model, the third group appeared to

be more convincing than the others, neglecting the results

of the present study.

The main aim of this study is to present a new simple

and very accurate model based on QSPR using the normal

boiling point (NBP) as a key property. NBP property has

been used as a key property in some of the correlations

presented in the first group. However, no unified, easy to

use, comprehensive, and accurate model has been pre-

sented for estimation of the FP property, so far.

Materials and methods

Materials

DIPPR 801 [81] database has been found especial appli-

cations in developing new models for prediction of phys-

ical properties, because it contains a large number of pure

compounds as well as their evaluated physical properties.

This database is recommended by AIChE (American

Institute of Chemical Engineers). In order to provide a

dataset for calculation of FP, 1472 pure compounds were

selected, and the related values of the FP and NBP prop-

erties were observed for the calculations. These compounds

are presented as supplementary material.

Determination of model parameters

Molecular descriptors are defined as numerical character-

istics associated with chemical structures. Each one is the

final result of a logical and mathematical procedure which

transforms chemical information encoded within a sym-

bolic representation of a molecule into a useful number

applied to correlate the physical properties.

A review for software applied to calculate molecular

descriptors has been found elsewhere [82]. One of the most

widely used software implemented for this propose is the

Dragon software [83]. Dragon calculates more than 3000

molecular descriptors for many common chemical struc-

tures. Since the values of many descriptors are related to

the bonds lengths and bonds angles, etc., the chemical

structure of each molecule must be optimized before

calculating its molecular descriptors. Owing to this fact,

chemical structures of all 1472 pure compounds were

drawn in Hyperchem software [84] and optimized using the

MM ? molecular mechanics force field.

After optimizing the chemical structures, the molecular

descriptors were calculated using the Dragon software. The

input values to this software have been the optimized

chemical structures of the investigated molecules obtained

by the MM ? optimization strategy.

Development of the model

Using the optimized chemical structures of the compounds

obtained in the previous step, molecular descriptors were

calculated by the Dragon software. These molecular

descriptors were prepared to be applied in the next step of

computations. Before beginning of the next computations

step, NBP was added to the descriptors as an experimental

descriptor. The idea of using the NBP property for pre-

diction of the FP is not a new idea; however, application of

NBP coupled with other molecular descriptors in QSPR

studies is a new one.

The next problem is to find a linear equation that can

predict the FP property with the least number of variables

as well as highest accuracy. In other words, the next step is

to find a subset of variables (most statistically effective

molecular descriptors of FP property) from all available

variables (all input variables containing molecular

descriptors and NBP property), which is able to predict the

FP with the least possible errors in comparison with the

existing experimental data.

A generally accepted mathematical method for this

problem is genetic algorithm-based multivariate linear

regression (GA-MLR). In this method, genetic algorithm is

applied for selection of best subset variables with respect to

an objective function. This algorithm was firstly presented

by Leardi et al. [85].

There are many standard fitness functions such as R2,

adjusted R2, Q2, Akaike information content, LOF function,

etc., used as objective function in GA-MLR technique [19].

RQK fitness function is a suitable fitness function for model

searching proposed to avoid unwanted model properties,

such as chance correlation, presence in the models of noisy

variables, and other model pathologies resulting in lack of

model prediction capability [82, 86]. This fitness function is

a constrained fitness function based on Q2
LOO (leave-one-out

cross validated variance) statistics and four tests that must

be fulfilled contemporarily. The Q2
LOOis defined as:

Q2
LOO ¼ 1�

Pn

i¼1

yi � ŷicð Þ2

Pn

i¼1

yi � �yð Þ2
ð1Þ
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where yi; �y, and ŷic are FP property for ith pure compound,

mean value of FP for all pure compounds, and ŷic response

of the ith object estimated using a model obtained without

using the ith object, respectively.

These four constrains were calculated as follows [82,

86]:

DK ¼ KXY � KX [ 0 Quick ruleð Þ ð2Þ

DQ ¼ Q2
LOO � Q2

ASYM [ 0 Asymptotic Q2 rule
� �

ð3Þ

RP [ 0 Redundancy RP ruleð Þ ð4Þ

RN [ 0 Overfitting RN ruleð Þ ð5Þ

These four constrains have been extensively explained by

Todeschini et al. [82, 86]. Since this algorithm check many

problem characteristics during the calculations, we can

ensure that the final model is valid and can be regarded as a

predictive. In this study, GA-MLR with RQK fitness

function was used based on satisfactory results in the

author’s previous works using the same technique [29–34,

36, 37, 39, 40, 44, 45, 47, 48, 57–60, 63–65, 67, 69–71].

Before performing GA-MLR calculations, the dataset

must be divided into two collections. The first one is applied

for training and the second one is applied for testing. Using

the training set, the best model is found, and then the pre-

dictive capability of the obtained model is checked by the

test set. In this study, 80% of the database was used for

training set (1178 pure compounds) and 20% of the database

(294 pure compounds) was used for the test set. It should be

noted that these compounds were randomly selected.

Several validation techniques should be used to obtain a

valid model. The most widely used techniques have been

presented by Todeschini et al. [82, 86]. Among those

techniques, the bootstrapping, and the y-scrambling and

external validation techniques are used in this study.

Using the bootstrapping technique, the original size of

the dataset (n) is preserved for the training set, by the

selection of (n) objects with repetition. In this procedure,

the training set usually consists of repeated objects and the

evaluation set of the objects left out. The model is calcu-

lated on the training set and responses are predicted on the

evaluation set. All the squared differences between the true

response and the predicted response of the objects of the

evaluation set are collected ‘‘PRESS’’. This procedure of

building training sets and evaluation sets is repeated

thousands of time. ‘‘PRESS’’ is summed and the average

predictive ability is calculated [82].

The y-scrambling technique is adopted to check the

models with chance correlation. This test is performed by

calculating the quality of the model (usually the Q2) ran-

domly modifying the sequence of the response vector by

assigning a response to each object randomly selected from

the true responses. If the original model has no chance

correlation, there is a significant difference in the quality of

the original model and that associated with a model

obtained with random responses. The procedure is repeated

hundreds of times [82].

External validation technique is a validation technique in

which a test is retained to perform a further check on the

predictive capabilities of a model obtained from a training set

with predictive ability optimized by an evaluation set [82].

Results and discussion

Following the presented procedure, the most accurate mul-

tivariate linear equation was obtained. For obtaining this

equation, firstly, the best one-molecular descriptor model

was achieved. Later, the best two-molecular descriptor

model was evaluated. This procedure was repeated to obtain

the best three-, four-, five-, etc. molecular descriptor model.

The best multivariate linear model has three parameters

because increase in the number of molecular descriptors has

no significant effect on the accuracy of the best model. This

equation and its statistical parameters are presented as:

FP ¼ 43:5120ð�1:6290Þ þ 0:8374ð�0:0054ÞNBP

þ 1:3695ð�0:0512ÞSs

� 39:1658ð�0:8716ÞVEv1ntrainiing

¼ 1187; ntest ¼ 294; R2
training ¼ 0:9837;R2

test

¼ 0:9786Q2
Loo ¼ 0:9835; Q2

BOOT ¼ 0:9834; Q2
EXT

¼ 0:9821; Q2
LTO ¼ 0:9801s ¼ 9:725; a ¼ �0:018; F

¼ 23610:40DK ¼ 0:003; DQ ¼ 0:000; RP ¼ 0:002; RN

¼ 0:000 ð6Þ

where s is residual mean square error, a is y-scrambling

parameter, and F is Fisher function, ntrainiing is number of

available pure compounds in the training set and ntest is

number of available pure compounds in the test set. In

addition, the molecular descriptors and their physical

meanings are presented in Table 1. More information about

procedure of calculation of these molecular descriptors

from chemical structure of a compound is indicated in the

Dragon software user’s guide [83].

Table 1 The molecular descriptors entered to the model

Molecular

descriptor

Type Definition

NBP Experimental

descriptor

Experimental NBP

Ss Constitutional

descriptor

Sum of Kier–Hall electrotopological

states

VEv1 Eigenvalue-

based indice

Eigenvector coefficient sum from van

der Waals weighted distance matrix
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‘‘NBP’’ is the experimental normal boiling point of pure

compounds. ‘‘Ss’’ is the sum of Kier–Hall electrotopolog-

ical states. Those molecules containing atoms of high

electronegativity and/or terminal atoms or atoms that lie on

the mantle of the molecule, has large ‘‘Ss’’ value, so the

‘‘Ss’’ is a measure of electronic accessibility of an atom and

can be interpreted as a probability of interaction with

another molecule. Equation 6 indicates this fact that FP

property value increases with increase of the ‘‘Ss’’ [82].

‘‘VEv1’’ is eigenvector coefficient sum from van der

Waals weighted distance matrix. It is a measure of average

distance between atoms in a molecule. Equation 6 shows

the increase in FP values with ‘‘VEv1’’ increases [82].

For checking validity of the model, bootstrap technique,

y-scrambling, and external validation techniques were used

[82, 86]. The bootstrapping was repeated 5000 times. Also,

y-scrambling was repeated 300 times. As can be seen, the

small differences among Q2
LOO; Q2

BOOT; Q2
EXT, and R2 show

that the obtained model is a reliable one having convincing

predictive capability. In the case that the number of the

objects in the dataset is quite large (such as in this study),

the predictive ability obtained is too optimistic. This is due

to a too small perturbation of the data when only one object

is left out. Therefore, in these types of problems, the leave-

more-out cross validation technique is used. The leave-10-

out cross validation was used for this purpose. This tech-

nique was repeated 100 times over 100 random splits of

training-test sets. The average the cross validation coeffi-

cient was equal 0.9801 (Q2
LTO ¼ 0:9801). Also, the inter-

cept value of the y-scrambling technique has low value

(a ¼ �0:018) that reveals the model is valid. In addition,

the values of four constraints of the model are equal or

greater than zero which shows that this model is valid and

is not chance correlation.

All the validation techniques show that the obtained

model is a reliable model and it is able to be applied for

prediction of the FP property values of pure compounds.

The FPs predicted values using Eq. 6 in comparison

with the DIPPR 801 data are presented in Fig. 1. These

values in comparison with the DIPPR 801 data are pre-

sented as supplementary material. In addition, the values of

the descriptors and status of all compounds (training set or

test set) are reported as supplementary material.

The absolute percent error obtained by the model for all

1472 pure compounds is shown in Fig. 2. The results

indicated in this figure show that the FP values of only 11

of 1472 pure compounds has been predicted by more than

10% using the model. The absolute average error of the

calculations of values of this property for 1355 pure

compounds have been calculated to be less than 5% in

comparison with the existing experimental data. These

results confirm the accuracy of the model in prediction of

the FP property values for various types of pure

compounds.

A comparison between the presented model results and

the previously presented ones in the literature is shown in

Table 2.
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Fig. 1 The comparison between the predicted FP and DIPPR 801

data for training set and test set
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Fig. 2 The absolute percent error of the obtained model over 1472
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Table 2 Comparison among the model and the most important pre-

viously presented models

Model R2 AAEa rms n

Suzuki et al. [22] 0.9351 10.3 13.5 400

Tetteh et al. [75] 0.9326 10.2 13.1 400

Katritzky et al. [76] 0.902 – 16.1 271

Katritzky et al. [77] 0.878 13.9 – 758

Gharagheizi and Alamdari [44] 0.9669 10.2 12.7 1030

Gharagheizi et al. [46] 0.9757 8.1 11.21 1378

Gharagheizi et al. [52] 0.979 8.1 10.6 1471

This model 0.982 7.2 9.7 1472

a Average absolute error
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It was found that the model is easiest one to use because

it needs only three parameters to predict the FP property

values. The least average absolute error and squared cor-

relation coefficient demonstrates that the proposed model

would be the most accurate one. The squared correlation

coefficient of the model is the largest one among all of the

previously proposed models. Furthermore, the model is the

most comprehensive one, since it has been checked by

most comprehensive FP database (containing 1472 pure

compounds).

The average absolute relative error (ARD) of the model

for each chemical structure of pure compounds used in this

study is shown in Table 3.

It has been proved that the largest deviation is related to

the inorganic gases. This case shows that the model is not

able to predict the FP property values of the particular

chemical structure group. The reason of this drawback is

Table 3 The average percent errors of the model over each one of

chemical families of compounds used in this study

Family Average percent error

1-Alkenes 2.52

2,3,4-Alkenes 1.80

Acetates 1.90

Aldehydes 1.92

Aliphatic ethers 1.66

Alkylcyclohexanes 0.82

Alkylcyclopentanes 0.91

Alkynes 2.34

Anhydrides 0.74

Aromatic alcohols 1.33

Aromatic amines 2.22

Aromatic carboxylic acids 1.70

Aromatic chlorides 1.95

Aromatic esters 2.62

C, H, BR compounds 3.12

C, H, F compounds 2.68

C, H, I Compounds 2.35

C, H, multihalogen compounds 3.37

C, H, NO2 compounds 3.45

C1/C2 aliphatic chlorides 3.80

C3 & higher aliphatic chlorides 2.74

Cycloaliphatic alcohols 2.85

Cycloalkanes 2.14

Cycloalkenes 1.97

Dialkenes 2.62

Dicarboxylic acids 2.12

Dimethylalkanes 1.49

Diphenyl/polyaromatics 1.48

Epoxides 2.33

Ethyl & higher alkenes 1.85

Formates 1.15

Inorganic bases 2.08

Inorganic gases 8.54

Isocyanates/diisocyanates 2.04

Ketones 1.62

Mercaptans 3.35

Methylalkanes 1.20

Methylalkenes 1.40

Multiring cycloalkanes 4.42

N-alcohols 1.85

N-aliphatic acids 1.51

N-aliphatic primary amines 2.24

N-alkanes 3.00

N-alkylbenzenes 2.06

Naphthalenes 1.68

Nitriles 2.65

Nitroamines 1.37

Table 3 continued

Family Average percent error

Organic salts 2.46

Organic/inorganic compounds 4.81

Other aliphatic acids 1.40

Other aliphatic alcohols 2.85

Other aliphatic amines 3.04

Other alkanes 1.68

Other alkylbenzenes 1.42

Other amines, imines 1.52

Other condensed rings 2.36

Other ethers/diethers 2.74

Other hydrocarbon rings 1.87

Other monoaromatics 1.95

Other polyfunctional C, H, O 2.20

Other polyfunctional organics 2.45

Other saturated aliphatic esters 2.04

Peroxides 2.46

Polyfunctional acids 2.51

Polyfunctional amides/amines 1.74

Polyfunctional C, H, N, Halide, (O) 2.12

Polyfunctional C, H, O, Halide 3.73

Polyfunctional C, H, O, N 1.98

Polyfunctional C, H, O, S 1.69

Polyfunctional esters 2.10

Polyfunctional nitriles 1.96

Polyols 2.27

Propionates and butyrates 1.07

Silanes/siloxanes 2.92

sulfides/thiophenes 2.59

Terpenes 1.64

unsaturated aliphatic esters 0.89
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mainly due to the number of pure compounds of the

chemical structure type in the dataset. It seems that the

modification of the model needs more experimental data

for the chemical structures types especially for the small

group of inorganic gases in the database.

Conclusions

In this article, a new simple QSPR model was presented for

prediction of the FP property of pure compounds. This

model is a three-parameter linear model. These three

parameters include experimental NBP of the compounds

and two molecular descriptors. These two molecular

descriptors are calculated only from chemical structure of

the compounds. To develop the model, the most compre-

hensive database of FPs, containing 1472 pure compounds

of various chemical structures were used. The results show

that the model is the most accurate and most comprehen-

sive model in comparison with the previously presented

models in the literature.

References

1. Wu Q, Bao J, Zhang C, Liang R, Wang B. The effect of thermal

stability of carbon nanotubes on the flame retardancy of epoxy

and bismaleimide/carbon fiber/buckypaper composites. J Therm

Anal Calorim. 2011;103(1):237–42.
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